3.271 \(\int \frac{\sec ^3(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=150 \[ \frac{\left (-a \sin ^2(e+f x)+a+b\right ) E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right )}{b f (a+b) \sqrt{\cos ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}-\frac{a \sin (e+f x)}{b f (a+b) \sqrt{\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}} \]

[Out]

-((a*Sin[e + f*x])/(b*(a + b)*f*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)])) + (EllipticE[ArcSin[Sin[e +
f*x]], a/(a + b)]*(a + b - a*Sin[e + f*x]^2))/(b*(a + b)*f*Sqrt[Cos[e + f*x]^2]*Sqrt[Sec[e + f*x]^2*(a + b - a
*Sin[e + f*x]^2)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])

________________________________________________________________________________________

Rubi [A]  time = 0.383954, antiderivative size = 182, normalized size of antiderivative = 1.21, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {4148, 6722, 1974, 414, 21, 426, 424} \[ \frac{\sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a \cos ^2(e+f x)+b} E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right )}{b f (a+b) \sqrt{\cos ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}} \sqrt{a+b \sec ^2(e+f x)}}-\frac{a \sin (e+f x) \sqrt{a \cos ^2(e+f x)+b}}{b f (a+b) \sqrt{-a \sin ^2(e+f x)+a+b} \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-((a*Sqrt[b + a*Cos[e + f*x]^2]*Sin[e + f*x])/(b*(a + b)*f*Sqrt[a + b*Sec[e + f*x]^2]*Sqrt[a + b - a*Sin[e + f
*x]^2])) + (Sqrt[b + a*Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], a/(a + b)]*Sqrt[a + b - a*Sin[e + f*x]^
2])/(b*(a + b)*f*Sqrt[Cos[e + f*x]^2]*Sqrt[a + b*Sec[e + f*x]^2]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])

Rule 4148

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x
], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] &&  !IntegerQ
[p]

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rule 1974

Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{p, q}, x] &&
 BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  !BinomialMatchQ[{u, v}, x]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right )^2 \left (a+\frac{b}{1-x^2}\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \left (b+a \left (1-x^2\right )\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \left (a+b-a x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}-\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{-a-b+a x^2}{\sqrt{1-x^2} \sqrt{a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{\sqrt{b+a \cos ^2(e+f x)} \operatorname{Subst}\left (\int \frac{\sqrt{a+b-a x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{\left (\sqrt{b+a \cos ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{a x^2}{a+b}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}\\ &=-\frac{a \sqrt{b+a \cos ^2(e+f x)} \sin (e+f x)}{b (a+b) f \sqrt{a+b \sec ^2(e+f x)} \sqrt{a+b-a \sin ^2(e+f x)}}+\frac{\sqrt{b+a \cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|\frac{a}{a+b}\right ) \sqrt{a+b-a \sin ^2(e+f x)}}{b (a+b) f \sqrt{\cos ^2(e+f x)} \sqrt{a+b \sec ^2(e+f x)} \sqrt{1-\frac{a \sin ^2(e+f x)}{a+b}}}\\ \end{align*}

Mathematica [A]  time = 2.41617, size = 113, normalized size = 0.75 \[ \frac{\sec ^3(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\sqrt{2} (a+b) \sqrt{\frac{a \cos (2 (e+f x))+a+2 b}{a+b}} E\left (e+f x\left |\frac{a}{a+b}\right .\right )-a \sin (2 (e+f x))\right )}{4 b f (a+b) \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^3/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(Sqrt[2]*(a + b)*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)]*E
llipticE[e + f*x, a/(a + b)] - a*Sin[2*(e + f*x)]))/(4*b*(a + b)*f*(a + b*Sec[e + f*x]^2)^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.49, size = 6593, normalized size = 44. \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{3}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)^3/(b*sec(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{3}}{b^{2} \sec \left (f x + e\right )^{4} + 2 \, a b \sec \left (f x + e\right )^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e)^2 + a)*sec(f*x + e)^3/(b^2*sec(f*x + e)^4 + 2*a*b*sec(f*x + e)^2 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**3/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral(sec(e + f*x)**3/(a + b*sec(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (f x + e\right )^{3}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^3/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^3/(b*sec(f*x + e)^2 + a)^(3/2), x)